Will my mod explode if I do this?

Status
Not open for further replies.

Baditude

ECF Guru
ECF Veteran
Apr 8, 2012
30,394
73,076
71
Ridgeway, Ohio
At the top of the chart you will see that it has a column for Continuous Discharge Rate and one for Maximum Discharge Rate in amps. I don't see Maximum Continuous Discharge Rate.

Yeah, as far as that chart or table is concerned, I see a lot of inconsistancies and incorrect information. I would advise to take those ratings and specifications with a grain of salt.

My guess is whoever designed the chart, attempted to use "continuous discharge amps" as the continuous discharge rate, and the "maximum discharge rate" for the pulse or burst discharge rate. However, there's no consistancy in the specifications on that chart.

For instance, we know the common AW 18650 IMR 2000 mah battery has a 10 amp continuous discharge rating and 5 C rating, yet the chart author comes up with 7.5 continuous amps somehow. :confused

The AW 18490 IMR 1100 mah battery has a 15 C rating and a 16.5 continuous discharge rate according to Andrew Wan (AW) IMR16340 / IMR14500 / IMR18350 / IMR18490 / IMR18650 / IMR26500 *Part 2*
but the chart author lists 8.8 amps continuous discharge amps, 11 amps maximum discharge, and an 8 C rating. I don't understand how the chart author comes up with those numbers.
 
Last edited:

edyle

ECF Guru
ECF Veteran
Verified Member
Oct 23, 2013
14,199
7,195
Port-of-Spain, Trinidad & Tobago
Can you recommend a higher mah battery that would be suitable? I would really just like my battery to last at least all day when i'm only vaping at 8-12 watts on a 1.8 ohm coil.

In response to the earlier question, my rda has 0.8 ohm dual coils

How old are the batteries? Maybe they are just getting....... tired.
 
If you go to google play store or wherever you get your apps for your cell and get an app called "ohms law calculator" this app will allow you to enter 2 variable and figure out what amperage battery you will need. For example if you have a mechanical mod you would enter in the maximum voltage that the battery produces which is 4.2v and the second variable you know is the ohms of the coil which is 1.6 which would give you a total battery draw of 2.62 amps if you take that and make sure your battery can handle that at a constant you would never have a problem. Now with a hanna 30 they suggest that you use a minimum of a 12 amp constant battery draw I believe so you can safely vape anything the hanna will allow you to vape at that 12 amps now if you are only using a set voltage and your ohms law calculator determins that the amps are well within safe limits there should be no problems using those batteries for instance at 1.6 ohms you can vape to 16 volts and that produces a 10 amp draw but I am pretty sure you cant vape 160 watts on a hanna mod so in my opinion if you had a 10 amp constant high drain battery which would have a muchg higher puls rate at 1.6 ohms in a 30 watt device you would be very hard pressed to heat up the battery. God Bless Every Vaper Should Have An Ohms Law Calculator and A Basic Understanding Of Battery Safety

IMO:D:D
 

Bassnorma

Vaping Master
ECF Veteran
Verified Member
Sep 18, 2013
3,825
7,019
Geekville, USA
Actually...I was looking at this one...Battery drain | Steam Engine | free vaping calculators

...not the one that you posted Gandy....oops no wonder I did not see a chart....So I was actually asking about this one and the various calculations it makes. :facepalm:

Here is the explanation from the calculator link above:

"How battery drain is calculated – horses for courses
There are two main types of mods: Regulated, and unregulated (mechanical). (Putting a Kick in a mech mod automagically turns it into a regulated mod.) As far as battery drain is concerned, these are two completely different animals.

In an unregulated mod, a lower resistance atomizer means more current drawn from the battery, and less battery life. In a regulated mod, things get more complicated, and the rules are different.

Unregulated mods – a battery with a coil on it
Unregulated (mech) mods are very simple devices. They have one circuit. This circuit can be easily modelled using Ohm's law. In other words, if you have a basic understanding of Ohm's law, that is all it takes.

The battery drain is determined by two factors:

The resistance of the atomizer, which is more or less constant after you have built your coil(s).
The voltage of the battery, which decreases as the battery drains.
Using a single, fully charged, Li-ion cell, the voltage starts at around 4.2V. It quickly drops to around 3.7–3.6V as you use the mod, and stays there for a while. Once the voltage sinks under 3.6V, it starts dropping faster again, and the battery needs to be recharged. Discharing an ICR battery below 3V can ruin the battery. IMR batteries can handle as low as 2.5V.

There is not much more to mech mods. They are about as simple as an electrical circuit can get:

The voltage hitting the atomizer is the voltage from the battery (minus the tiny voltage drop in the switch and conductors).
The current flowing through the battery is the current flowing through the atomizer.
A multimeter and some straightforward use of Ohm's law you will give you all the numbers you need.

Regulated mods – fixed or variable voltage or power
Regulated mods are more difficult to model. But even though they are much more complex than mechs, with some selective simplification we can safely ignore most of the complexity. So we break these mods down into two circuits and a black box. This makes our regulated mod model little more than twice as complex as our mech mod model.

The two main circuits of a regulated mod are:

The atomizer (output) side.
The battery (input) side.
And never the twain shall meet. The regulator circuit takes care of that. It can have a bunch of more or less advanced circuits in itself, and it uses a little bit of power, but for the most part we can envision it as a black box separating the battery circuit from the atty circuit.

Tread carefully – here be pitfalls

Since we are looking at two separate circuits, you can never mix numbers from both sides of the regulator in your calculations. For instance: You cannot determine the current drained from the battery by measuring the resistance of the coil and the voltage of the battery. Using the resistance from one circuit, and the voltage from a different circuit, will result in a nonsensical answer. Nor can you determine the current going through the coil by determining the current from the battery.

Output – the atomizer

On the atomizer side, the voltage is ideally whatever the user has selected, but keep in mind that some APVs promise more than they keep. If you set the voltage to 5V, are you confident that the APV actually delivers 5V? Unless you know that your APV is accurate, you might want to measure and confirm the output voltage under load.

Variable wattage devices work like variable voltage devices, for the most part. The difference is that they measure the atomizer resistance, and uses this measurement, and Ohm's law, to calculate what voltage to set in order to reach your desired power.

Likewise, knowing the output voltage and resistance, you can calculate the output current and power yourself.

Input – the battery

On the battery side, the voltage is whatever the battery has in it at the moment, just like with mech mods. The power, however, is whatever the regulator needs to pull in order to deliver the desired voltage to the atomizer at any given time. So by dividing the power by the (ever decreasing) battery voltage, we find the (ever increasing) current.

Transfer the power – getting down to it

So how can our measured resistance tell us anything about battery drain? Well, there is one way to "transfer information" from one side of the regulator to the other. The trick is simple; to paraphrase some old movie: Use the power, Luke!

The power hitting the atomizer equals the power flowing from the battery, minus the power used by the regulator circuit.

These regulator circuits typically boast an efficiency between 80–95%. In practice this means that the regulator "steals" about a tenth of the power from the battery.

Knowing this, we can use our multimeter and Ohm's law to calculate what is going on at either side of the regulator. Then we can convert it to Watts, and voila! Subtracting (or adding) the loss in the regulator circuit, we now know the power on the other side as well.

Lastly, we use Ohm's law again, break down the power to current and voltage, and that's that: We now have all the numbers we need.

Battery capacity
Capacity is normally stated in mAh, but this number is not very usable as it is.

In unregulated mods the current drain decreases as the battery drains.
In regulated mods the current drain increases as the battery drains.
The interesting figure here is not mAh, but Wh (Watt-hours). Using Ohm's law and a nominal voltage of 3.7V, current capacity is easily converted to power capacity."

A 2 Wh battery can deliver two Watts continuously for one hour, one Watt for two hours, etc, half a Watt for four hours, etc.

Battery presets
Most of the battery specifications were collected from Baditude's blog post at ECF. The presets are for convenience only, and I can not promise you that I did zero mistakes when entering the values, so please take care to ensure that the presets that you use are in accordance with the actual specs of the batteries that you use."
 
Last edited:
Status
Not open for further replies.

Users who are viewing this thread